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3D Atmospheric Structure

o Atmospheric structure is largely defined by the distribution of 
temperature, humidity, and winds. 

o Winds govern the transport of energy in the atmosphere and 
represent a fundamental component of the Earth system 

o National academy of science named 3D atmospheric winds as 
key targeted observable in the decadal survey for quantifying 
movement of water vapor, pollutants/aerosols, cloud 
dynamics, and large scale circulation. 

o Applications include: Numerical weather prediction, data 
assimilation, wildfire plumes, ocean currents/winds, mesoscale 
convection, and more. 
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Observing the atmosphere

Radiosonde

Weather stations

Lidar winds

Scatterometer

o Rawinsondes and stations = ground truth 
observations. 

o Activate sensors include Lidar, 
scatterometers, and radar 

o Low earth orbit satellites have infrequent 
revisit times not well suite for global 
monitoring 

o Observations are assimilated in numerical 
weather forecasts as initial conditions 
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Observations for data assimilation

o Atmospheric Motion Vectors (AMVs) from 
geostationary have the highest impact per 
observation. 

o Radiosondes and Sounder observations also 
have high impact. 

o Dense and higher resolution data could have 
a large impact in NWP.
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NASA’s Global Earth Observing System at the Global Modeling and 
Assimilation Office (GMAO)



Geostationary satellites
16 Visible and Infrared bands

Specifications 
o GEO Imaging sensors produce high-frequency multi-spectral data 

o GOES-16/17/18, Himawari-8/9, GeoKompSat-2a, FY-4 
o Spatial: 0.5-2 km resolution 
o Temporal: 1-10 minutes 
o 5-16 spectral bands 
o Global coverage from multiple satellites 

Some Applications 
o Atmospheric motion vectors (Velden 1997; Apke 2022; Carr 2019) 
o Quantitative precipitation estimation (Sadeghi 2019) 
o Land surface temperature (Duffy 2022) 
o Convective storm patterns, anvil plumes (Bedka 2021) 
o Air quality (Kondragunta 2020) 
o Vegetation (Hashimoto 2021) 
o Wildfire detection (Xu 2017) 
o ….

GeoNEX L1G dataset - Near global, 10 minute, 2km
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WindFlow
o ML for Atmospheric Motion Vectors (AMVs) 

o Extract horizontal motion from sequences 
of humidity. 

o Learn from Numerical weather simulations 
which are widely available as synthetic 
data. Apply to GEO. 

o Flexible choice of optical flow architectures. 
Results compare four networks where we 
found RAFT to be the best performing. 

Loss = ||Y-F(I0,I1)||1

Apply to 
Geostationary 
satellite data. 

6Vandal et al. (2022) ”Dense Feature Tracking of Atmospheric Winds with Deep Optical Flow.” SIGKDD Proceedings (Oral, 7% acceptance rate)



GEOS-5 Nature Run: Flows across dimensions and scales

Figure: Results on nature run test set. A) Global and mesoscale comparison, B) U, V, and wind speed scatter plots, 
C) Time-series
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Satellite based winds - Rawinsonde Comparison

Input: Pair of GOES-16  
Band 8 Infrared Water 
Vapor

NOAA Derived 
Motion Winds

NEX-AI WindFlow
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Combine models for 3D Structure
Can we reconstruct vertical profiles from GEO imagery? 

Scientific observations 

1. Atmospheric profiles can be categorized into “clusters” 
representing different, well defined weather conditions.  

2. Meteorologists can visually identify features in GEO TIR imagery for 
most, if not all weather conditions. 

Hypothesis - A generative model can be learned to translate GEO TIR 
to radiosonde profiles 

Approach - Learn a translation between low dimensional 
representations of GEO TIR and radiosondes 

Variational Autoencoders (VAEs) compress high-dimensional data to a 
probabilistic latent representation, preserving uncertainty  and 
extracting useful features
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Geostationary VAE
High-fidelity VAE to learn a latent representation of GEO 
TIR 

Compressed representation can reduce storage 
requirements 

Trade-off between accuracy and compression ratio

10Vandal, TJ, et al. (2021) "Spectral Synthesis for Geostationary Satellite-to-Satellite Translation." IEEE Transactions on Geoscience and 
Remote Sensing.



Radiosonde data reconstruction - VAE
o VAE with transformer encoder layers and MLP decoder 

o Automatically fills missing values 

o Uncertainty aware sampling 

o Errors (dropping 20% of obs)  

Temperature = 1.5° C, RH = 2.7%
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Geostationary to 3D Profile

Predict radiosonde latent from GEO latent 

Train a model: 

  

such that  

 

F is defined as an MLP with 4 input features 
and 9 output features

F(zgeo) = zrad

zgeo = Egeo(GEO)
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500 hpa  a) Temperature and b) Relative 
Humidity Maps

c) Vertical profiles vs 
Radiosonde



Preliminary Analysis: Zeus AI  vs ERA5

1:1 comparisons  

Test set: January-April 2021 

N = 1101 

Relative humidity 

RMSE(zeus, igra) = 15.54% 

RMSE(era5, igra) =  18.980% 

Temperature 

RMSE(zeus, igra)  = 5.460 C 

RMSE(era5, igra)  = 3.364 C
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+ Improved spatial resolution and high-res atmospheric 
features 

+ High-refresh rate every 10-minutes 

- Underestimates warm core temperature



3D Hurricane Ian 
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Future Work
o Apply WindFlow to retrieved from multi-level relative humidity sequences to produce 3D winds. 

o Evaluate data products using triple collocation analysis against models and observations. 

o Evaluation performance for extreme events and case studies. 

o Develop Neural Ordinary Difference Equations (NODEs) to effectively assimilate and smooth our 3D product. 

o Apply NODE into future as a novel forecast.
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Open source software

Windflow 
https://github.com/tjvandal/windflow  
Includes code for a suite of optical flow models, 
training, and dependencies 

Windflow-light 
https://github.com/tjvandal/windflow-light 
Minimal dependencies 
Efficient inference, runs on a laptop 

CALIPSO cloud height prediction (In progress) 
https://github.com/tjvandal/calipso-cloud-height-
prediction  

  
Temporal Interpolation 
https://github.com/tjvandal/geostationary-
superslomo  
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import torch
import datetime as dt

from windflow import inference_flows
from windflow.datasets import goesr

# load model runner
checkpoint_file = 'model_weights/windflow.raft.pth.tar'
inference = inference_flows.FlowRunner('RAFT', 
                                     overlap=128, 
                                     tile_size=512,
                                     device=torch.device('cpu'),
                                     batch_size=1)
inference.load_checkpoint(checkpoint_file)

# load data
file1 = 'data/OR_ABI-L1b-RadC-
M6C10_G16_s20222751101170_e20222751103554_c20222751103590.nc'
file2 = 'data/OR_ABI-L1b-RadC-
M6C10_G16_s20222751106170_e20222751108554_c20222751108596.nc'

g16_1 = goesr.L1bBand(file1).open_dataset()
g16_2 = goesr.L1bBand(file2).open_dataset()

# Perform inference
_, flows = inference.forward(g16_1[‘Rad’].values,
•     g16_2['Rad'].values)

https://github.com/tjvandal/windflow
https://github.com/tjvandal/windflow-light
https://github.com/tjvandal/calipso-cloud-height-prediction
https://github.com/tjvandal/calipso-cloud-height-prediction
https://github.com/tjvandal/geostationary-superslomo
https://github.com/tjvandal/geostationary-superslomo
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